Reactive oxygen species regulate Bax translocation and mitochondrial transmembrane potential, a possible mechanism for enhanced TRAIL-induced apoptosis by CCCP.
نویسندگان
چکیده
TRAIL is a TNF family member that engages apoptosis via recruitment and rapid activation of caspase-8. Oxygen-free radicals, more generally known as reactive oxygen species (ROS) are well recognized for playing an important role in the regulation of tumor cell apoptosis. ROS within the cells act as secondary messengers in intracellular signalling cascades therefore function as anti-tumorigenic species. But very little is known about the effect of ROS on TRAIL-induced apoptosis. In this study we investigated the effect of CCCP, a classic uncoupler of oxidative phosphorylation, on TRAIL-induced apoptosis in TRAIL-resistant MCF-7 cells. It was found that pretreatment with CCCP for 6 h and then treatment with TRAIL for additional 3 h markedly enhanced apoptosis by 2-fold as compared with TRAIL alone. The uncoupling effect enhanced TRAIL-induced apoptosis by ROS generation. Moreover, CCCP treatment also reduced mitochondrial transmembrane potential (MTP, Delta Psi m) and induced Bax translocation to the mitochondria of its own account. This sensitization was inhibited with N-acetyl-L-cysteine (NAC) treatment by abrogating the ROS which was generated by the combined treatment of CCCP and TRAIL. Of interest, NAC also inhibited reduction of the Delta Psi m and Bax translocation after CCCP pretreatment which suggest that the generation of ROS may precede the loss in MTP. Thus, we demonstrated that CCCP-induced ROS generation enhanced TRAIL induced apoptosis by regulation of Bax translocation and mitochondrial transmembrane potential. The enhancing effect by CCCP-induced ROS generation was restored after NAC treatment. Therefore, our results suggest that uncoupling the cells by CCCP can overcome the resistance to TRAIL protein and can be a very efficient treatment for the tumor cells especially resistant to TRAIL-induced apoptosis.
منابع مشابه
Reactive oxygen species regulate caspase activation in tumor necrosis factor-related apoptosis-inducing ligand-resistant human colon carcinoma cell lines.
The effects of reactive oxygen species (ROS) on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in solid cancers have yet to be clearly defined. In this study, we found that the classic uncoupler of oxidative phosphorylation, carbonyl cyanide m-chlorophenylhydrazone (CCCP), induced a reduction in DeltaPsim and generation of ROS. This uncoupling effect enhanced ...
متن کاملCuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53
Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...
متن کاملBcl-2 inhibitors sensitize tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by uncoupling of mitochondrial respiration in human leukemic CEM cells.
Previous studies have shown that the lymphoblastic leukemia CEM cell line is resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis because of a low expression of caspase-8. Bcl-2 inhibitors, BH3I-2' and HA14-1, are small cell-permeable nonpeptide compounds, are able to induce apoptosis by mediating cytochrome c release, and also lead to dissipation of th...
متن کاملSensitization of TRAIL-resistant LNCaP cells by resveratrol (3, 4', 5 tri-hydroxystilbene): molecular mechanisms and therapeutic potential
BACKGROUND We have previously shown that prostate cancer LNCaP cells are resistant to TRAIL, and downregulation of PI-3K/Akt pathway by molecular and pharmacological means sensitizes cells to undergo apoptosis by TRAIL and curcumin. The purpose of this study was to examine the molecular mechanisms by which resveratrol sensitized TRAIL-resistant LNCaP cells. RESULTS Resveratrol inhibited growt...
متن کاملSulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis.
PURPOSE The purpose of this study was to examine the molecular mechanisms by which sulforaphane enhances the therapeutic potential of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in prostate cancer. EXPERIMENTAL DESIGN Cell viability and apoptosis assays were done by XTT and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, respectively. Tumor-bea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Oncology reports
دوره 18 1 شماره
صفحات -
تاریخ انتشار 2007